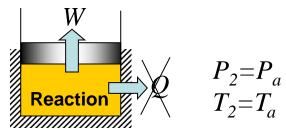
Adiabatic Flame Temperature

Consider the case where the cylinder is perfectly insulated so the process is adiabatic (Q = 0)



For a constant pressure process, the final products temperature, T_a , is known as the **adiabatic flame temperature** (AFT).

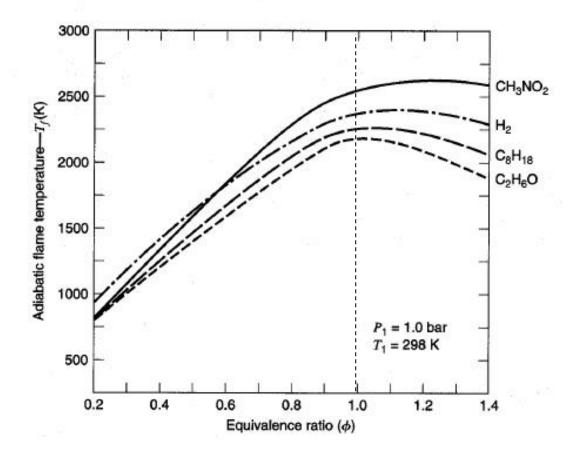
$$Q = \sum_{P} n_i \overline{h_i}(T_p) - \sum_{R} n_i \overline{h_i}(T_R) = 0$$
$$\sum_{P} n_i \overline{h_i}(T_a) = \sum_{R} n_i \overline{h_i}(T_1)$$

For a given reaction where the n_i 's are known for both the reactants and the products, T_a can be calculated explicitly.

Constant Pressure Adiabatic Flame Temperature w/products at equilibrium

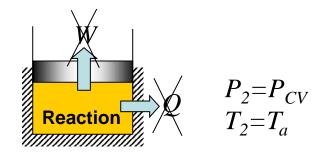
		*
FUEL		$T_{a,\phi=1.0}(\mathbf{K})$
$C_2N_2(g)$	Cyanogen	2596
$H_2(g)$	Hydrogen	2383
$NH_3(g)$	Ammonia	2076
$CH_4(g)$	Methane	2227
$C_{3}H_{3}(g)$	Propane	2268
$C_8H_{18}(l)$	Octane	2266
$C_{45}H_{32}(l)$	Pentadecane	2269
$C_{20}H_{40}(g)$	Eicosane	2291
$C_{2}H_{2}(g)$	Acetylene	2540
$C_{10}H_8(s)$	Naphthalene	2328
$CH_4O(l)$	Methanol	2151
$C_2H_6O(l)$	Ethanol	2197
$CH_3NO_2(l)$	Nitromethane	2545

Constant Pressure Adiabatic Flame Temperature w/products at equilibrium



Constant Volume Adiabatic Flame Temperature

Consider the case where the piston is fixed and the cylinder is perfectly insulated so the process is adiabatic (Q = 0)



$$Q = \sum_{P} n_i \overline{u}_i(T_p) - \sum_{R} n_i \overline{u}_i(T_R) = 0$$
$$\sum_{P} n_i \overline{u}_i(T_a) = \sum_{R} n_i \overline{u}_i(T_1)$$

Note h = u + pv = u + RT, so

$$\sum_{P} n_i(\overline{h}_i(T_a) - \overline{R}T) = \sum_{R} n_i(\overline{h}_i(T_1) - \overline{R}T)$$

Constant Volume Combustion Pressure

Assuming ideal gas behavior:

$$V_{R} = V_{P}$$

$$\frac{n_{R}\overline{R}T_{R}}{P_{R}} = \frac{n_{p}\overline{R}T_{p}}{P_{p}}$$

$$\frac{P_{p}}{P_{R}} = \left(\frac{n_{p}}{n_{R}}\right)\left(\frac{T_{p}}{T_{R}}\right) \rightarrow \frac{P_{CV}}{P_{i}} = \left(\frac{n_{p}}{n_{R}}\right)\left(\frac{T_{a}}{T_{i}}\right)$$

For large HCs the mole ratio term is small, e.g., for stoichiometric octane air

$$C_8H_{18} + 12.5(O_2 + 3.76N_2) \rightarrow 8CO_2 + 9H_2O + 47N_2$$

$$\frac{P_{CV}}{P_i} = \left(\frac{n_p}{n_R}\right) \left(\frac{T_a}{T_i}\right) = \left(\frac{64}{60.5}\right) \left(\frac{T_a}{T_i}\right) = 1.06 \left(\frac{T_a}{T_i}\right)$$

For stoichiometric octane-air T_a is 2266K so $P_{CV}/P_i = 8.1$

Adiabatic Flame Temperature w/Products at Equilibrium

$$\begin{split} C_{\alpha}H_{\beta} + (\alpha + \frac{\beta}{4})(O_2 + 3.76N_2) &\rightarrow aCO_2 + bH_2O + cN_2 + dO_2 + eCO + fH_2 \\ &+ gH + hO + iOH + jNO + kN + \cdots \end{split}$$

- One can calculate the AFT for the above stoichiometric reaction where the products are at equilibrium.
- Note dissociation in the products will result in a lower AFT since dissociation reactions are endothermic.
- Computer programs are used for these calculations